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NUMERICAL ANALYSIS OF SUPERSONIC FLOW OF AN 

IDEAL GAS IN THE WAKE OF AN 

AXISYMMETRICA L BODY 

V. V.  B u l a n o v  UDC 518:517.944/947 

A numerical experiment is carr ied out on supersonic flow in the wake of an axisymmetrical  
body, and estimates a re  obtained for the "scheme" (artificial} viscosity introduced by a maxi-  
mally stable difference scheme [1] into the investigated flowo 

1.  S t a t e m e n t  of t h e  P r o b l e m  

Many papers have been published in the period from 1965 through 1975 on the numerical solution of 
problems involving the flow of a viscous liquid and a compressible gas in the wake of a body with separation 
points and reverse-c i rcula t ion  flow zones. In the majority of those papers the complete system of Navier 
--Stokes equations is approximated by a finite-difference scheme of f i rs t  or second order,  which is then 
solved by some suitable numerical or iterative technique. 

However, solutions of the complete system of Navier -- Stokes equations a re  obtained only for relatively 
small to moderate (values of a few hundred) Reynolds numbers (see, e .g . ,  [3,4]). The numerical results ob- 
tained in these studies mainly corroborate  the schematic representations of the flow pattern both in the separa- 
tion zone and in the wake as a whole. 

Very few results have been published on the numerical study of supersonic flows in the wakes of bodies 
at high and very high Reynolds numbers. 

A modern approach that  offers fuller understanding and investigation of the singular characterist ics of 
:flow at large Reynolds numbers is the application of shock-smearing (or shock-capturing) finite-difference 
schemes,  which approximate the system of Euler equations rather  than the complete system of Navier -- Stokes 
equations (see, e~ [5,6])~ 

The numerical solutions generated by such investigations may be viewed as numerical experiments, 
which correspond in their principal features to the t rue  flow pattern for sufficiently large Reynolds numbers 
and yet a re  useful not only for the deeper insight that they offer into the singular flow characterist ics at 
corners ,  in aft and wake zones, etc~ but also for exhibiting the capabilities and singular characterist ics of 
~he difference scheme itself, for example the influence of the spatial mesh size of the computing grid, type of 
artificial viscosity, etc., on the accuracy of computation. 
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Fig .  1. Field of i soba r s  obtained by matching of the  p r e s s u r e  fields 
in the  two s t ages  o a) Computing regions  by s t a g e s ;  b) p r e s s u r e  
field for  M~ = 2.84. 

We touch on s o m e  of t h e s e  p rob lems  in the  preser r  a r t i c l e ,  which is concerned with the numer i ca l  so lu -  
t ion  of the  p rob lem of supe r s  onic idea l -gas  flow past  an  a x i s y m m e t r i e a l  body of c o n e -  cyl inder  configurat ion 
at f r e e s t r e a m  Maeh number  2.84. The  ha l f -angle  of the  conical  par t  of the  body is 30 ' ,  and the  r a t io  of the 
length of the  cy l indr ica l  pa r t  of the  body to  its d i a m e t e r  is 2.5. 

The  p rob lem is solved in two s tages  : 1) At the ini t ial  t i m e  the  field of p a r a m e t e r s  cor responding  to in-  
s tantaneous  plunging of the  body into a superson ic  flow is speci f ied;  2) then the p rocess  of t r ans i t ion  to  a 
s teady  d is t r ibut ion  of p a r a m e t e r s  compr i s ing  a solution of the  flow prob lem is analyzed.  The  flow p a r a m e t e r s  
i n t h e  f i r s t  s t age  a r e  calculated i n t h e  reg ion  OtLIN1R 1 (see Fig .  l a ) ,  which has dimensions  of 60 x 100 m e s h  
units ~ The  fIow p a r a m e t e r s  in the second s tage  a r e  calculated in the  reg ion  O2L2N2R2, which has different  d i -  
mensions  f r o m t h e s e  of the  reg ion  OILINtR1, compr i s ing  20 • 300 (or 40 • 150) m e s h  uni ts .  As the initial  data  
we adopt the  f i r s t - s t a g e  solut ion,  which is obtained by re laxa t ion .  For  the initial  flow p a r a m e t e r s  we use  the i r  
values in the zone A adjacent  to  the  l a te ra l  s u r f ace  of the cy l indr ica l  par t  of the body. 

2 .  R e s u l t s  o f  t h e  C o m p u t a t i o n s  

The  ma thema t i ca l  model  of nonsteady a x i s y m m e t r i c a l  flow is the s y s t e m  of Euler  equations with a p p r o -  
p r i a t e  ini t ial  and boundary condit ions.  The  s y s t e m  of equations is wr i t ten  in d ive rgence  f o r m :  

Of O F (f) + O v 
O-t - §  Ox ~ y  O ( f ) + - - H ( f ) = O  (1) 

Y 

using the vec to r  notation 

p pu pv 9v 

f =  pu , F =  Pu~+P G =  our , H =  puv 
pv puv pv z q- p pv z 

e (e + p) u (e + p) v (e + p) v 

The p a r a m e t e r  v c h a r a c t e r i z e s  the  type  of s y m m e t r y :  u = 1 for  the a x i s y m m e t r i e a l ,  and v = 0 for the planar 
case. 

Together with the general system (!), for uncoupling of the two-dimensional difference operator into one- 
dimensional operators we introduce the auxiliary one-dimensional systems 

af a 
0-T q- ~ F (f) = 0, (2) 

0[ 0 v _ 

at + ~ G (r) + -b-# (f) = 0. (3) 
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Fig.  2. Radial var ia t ion of a~ p r e s su re ,  
1) A y = 0 . 0 5 ,  Ax=O.1 ;  2) A y = 0 . 0 2 5 ,  AX= 
0.05. 

The differencing approximation of the sys tem is made on the grid 

xk=khx , k = O ,  1, 2, . . . ; yl-=lAy, / = 0 ,  1, 2, . . ; tn=~hd 

with constant mesh spacings for the spat ial  coordinates and t ime spacings determined f rom the stabili ty con- 
dition, which may be written in the form 

~x At" • = (lul -F a)" ~ 1, Z = ~ (Io I -F a)" ~ 1. (4) 

To approximate the sys tem of equations (1) on the basis of expressions (2) and (3) we use a maxirnally 
stable explicit a r t i f ic ia l -v isces i ty  second-o rde r  difference scheme,  which is descr ibed in detail  in [1]. We 
the re fo re  omit the deseript ion of the scheme itself and mere ly  indieate the a r t i f ic ia l -v iscos i ty  expressions : 

Bn-'SxQ~,t-F6gRg, t, (5) 

in which 

" 1 6 ~  ~ , 18~f~ , ,~  '~ 18U~. ,18~f  ~ . ,  

6 is the difference operator ,  and w is a coefficient that varies  between 1.0 and 1.5. 

The computations a re  car r ied  out in dimensionless pa ramete r s ,  to which the problem is reduced with the 
f r ee s t r eam p res su re  and density and the radius of the cyl indrical  part  of the body adopted as independent c h a r -  
ac te r i s t ic  sca le  units. 

In the f i rs t  s tage the computing grid has 6000 mesh points, including 60 with respec t  to x and 100 with 
respect  to y.  Here Ay = 0.05, and AX = 0.0866. 

The number of y - m e s h  points in the computing grid is made larger  in order  to  obtain more  prec i se  
values of the fundamental flow parameters  (p, pu, pv, e) on both the conical and the cyl indrical  parts of the 
body. 

T he variat ion of the fundamenta I flow parameters  on the conical  and cyl indrical  pa r t s  of the body is checked 
continuously throughout the computing process ,  and the parameters  a r e  subsequently compared with tabulated 
values.  On the conical sur face  and in the flow region next to it the numerical  values a re  compared with the 
values tabulated in [7], in which the relat ive e r r o r  of the solution of the difference equations is a few thousandths 
of a percent .  On the cyl indrical  sur face  and in the adjacent flow the numerical  values of the flow parameters  
a re  compared with the values tabulated in [8] according to the Prand t l - -  Meyer equations with allowance for 
turning of the flow through 30 ~ at the co rne r .  The flow paramete r s  around the conical part of the body a re  
taken as the initial parameters  in calculating the tabulated values.  

It is judged that the agreement  between the numerical  and tabulated values is good if the flow parameters  
in the given regions differ by less than 0.5%. When this condition is sat isf ied,  the f i rs t  s tage is te rminated .  

To  i l lustrate the behavior of the flow in the  f i rs t  Stage Fig. lb gives the field of isobars formed as a r e -  
sult of t ransi t ion of the flow to a steady distribution. F r o m  the positions of the isobars we can est imate the 
location and waveform of the bow shock.  The behavior of the isobars in the vicinities of the corner  points in 
both the fore  and the aft regions indicates the generat ion of oblique shocks at those points. It is important to 
note that the isobar field at the aft par t  of the body and in the wake in Fig.  lb  is obtained by numerical  compu- 
tat ion of the flow parameters  i n the  second s tage and is then compared with the isobar field of the f i rs t  s tage,  
i .e . ,  the p r e s s u r e  fields of the two stages a re  matched. 
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data on the aft pressure versus Reynolds number. 

From [2]; K1 = 0.68, K 2 = 0.65. 

In the second s tage the same  total number of mesh  points is retained in the investigated region (6000), 
but the actual  dimensions of the computing grid a r e  al tered somewhat;  the number of y - m e s h  points is 20 (or 
~0), and the number of x-points is, respect ively ,  300 (or 150). Here Ay = (1/2)Ax = 0.05 (or ~y = (1/2)~x = 
0~ This modification of the dimensions of the computing grid is motivated by the importance of analyzing 
in c loser  detail  the behavior and cer ta in  charac te r i s t i cs  of the flow precise ly  at the aft part of the body and in 
the zone immediately adjacent to it extending a length of five to ten base d iameters  ~ 

During this s tage of the computing process  the var ia t ion of the flow parameters  is again checked at the 
aft part  of the body and at a cer ta in  point in the wake. It is judged that a s table s teady-s ta te  solution is ob- 
tained if the flow paramete r s  in the investigated regions vary  less than 0.5% over the span of 50 mesh  spacings .  

Of prac t ica l  interest  in connection with the flow in the aft region is the behavior of the p res su re  along the 
radius of the aft sect ion.  An analysis of the numerical  resul ts  on the aft p re s su re  along the radius of the cy-  
linder (see Fig.  2) shows that the local value of the aft p r e s su re  gradually dec reases  from the center  of the 
cylinder toward its per iphery .  In the vicinitY of the corner  point a cer ta in  reduction is observed at f i rs t  in 
the value of the aft p res su re ,  but then, c loser  t o t h e  corner  point, it increases  very  slightly (see curve 1 in 
Fig.  2). With a reduct ion in the spat ial  mesh  spacing by one half the var ia t ion of the aft p re s su re  along the 
radius of the cylinder is smoother  (curve 2 in Fig.  2). 

Using the local values of the aft p res su re ,  we determine the a r e a - a v e r a g e  p re s su re  Pay for both curves 
given in Fig.  2. For  ~x = 0.1 and ~y = 0.05 the average  p re s su re  is 0.68. With P~ = 1 the a r ea - ave rage  aft 
p r e s s u r e  ra t io  is Kl = P a v / P ~  = 0.68. For  Ax = 0.05 and Ay = 0.025 the ra t io  is K 2 = P a v / P ~  = 0.65. 

The average  aft p r e s su re  rat ios K1 and K 2 thus obtained for both computing schemes a re  super imposed on 
the experimental  curve Pav/Poo = f(Re) obtained by Kavanau [2] for a broad range of Reynolds numbers (see 
Fig.  3). 

We note that the numerica l  resul ts  on the aft p r e s su re  and the experimental  data of Kavanau re fe r  to the 
s a m e  values of the parameters  charac te r iz ing  both the impingent supersonic  flow (f rees t ream Moo = 2.84) and 
the geomet ry  of the c o n e - - c y l i n d e r  configuration. 

The compar i son  of the numerica l  resul ts  on the aft p re s su re  with the experimental  data leads to the con- 
clusion that the numer ica l  experiment on supersonic  flow of an ideal gas in the wake of an ax i symmet r i ca l  body 
is consistent  in its main features with the t rue  flow at Reynolds numbers of order  (3 to 3.5) .104. 

This conclusion is supported by the behavior of the flow parameters  in the wake of the body. Figure 4 
gives profiles of the axial velocity component in the wake and the field of inStantaneous velocities obtained in 
the second s tage of computation. In this scheme Ax = 0.05, Ay = 0.025, the distance f rom the aft sect ion to the 
edge of the computing grid is S = 7 base d iamete r s ,  and the number of integration steps is n = 3000. It is evi- 
dent f rom Fig.  4 that the flow is s table.  The r eve r s e - c i r cu l a t i on  zone spans a distance corresponding to two 
base  d iameters  along the longitudinal axis .  The upper boundary of this zone is near the line u = 0 (Fig. 4a), 
and its lower boundary is before the s y m m e t r y  axis (Fig, 4b). 

The flow paramete r s  a r e  checked continuously at a point on the  wake axis,  at a distance of about oae dia-  
meter  f rom the aft sect ion (point B in Fig.  4b). It is at this point that the minimum pres su re  is observed in 
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Fig. 4. Instantaneous velocity field in the wake. 
a) Profiles of axial velocity component (curve 1 rep-  
resents u = 0); b) total field tmttern (B indicates the 
point at which the parameters a re  checked). 

the reverse-c i rcula t ion zone PB = 0.61), along with the maximum absolute value of the negative axial velocity 
component PB = --0.6). 

Inthe ether scheme, with Ax = 0.1, Ay = 0.05, S = i0 diameters, and n = 3000, the pressure and axial 

velocity component at the check point B scarcely  change u B = 0.63; u B = --0.58). Neither do the dimensions 
of the wake change, even though in this scheme the dimensions of the computing grid are  increased somewhat. 

Thus, our numerical experiment on supersonic flow in the wake of an axisymmetrical  body makes it pos- 
sible to estimate the viscosity introduced by the maximally stable shock-smearing difference scheme [1] into 
the analyzed flow. The value of this "scheme" (artificial) viscosity corresponds to a physical viscosity char-  
acterized by R~nolds  numbers (3 to 3.5) .104. 

N O T A T I O N  

x, axial coordinate; y, radial coordinate; t ,  t ime; p, pressure;  p, density; u, axial velocity compo- 
nent; v, radial velocity component; e, total specific energy; p(u 2 + v2)/2 + P/(T -- 1); T, specific heat ratio; 
~', sound velocity; M, Mach number; Re, Reynolds number; Ax, mesh spacing of computing grid along x; Ay, 
the same for y; At, time spacing; k, axial index of computing mesh point, l, radial index of computing mesh 
point; p~. p~, M~, f rees t ream parameters ;  PB' PB, MB, flow parameters  at check point; r c, /c, radius and 
length of cylindrical poart of body; S, distance from aft section to edge of the computing grid; Pay, a rea-  
average pressure;  KI, Ks, p ressure  coefficients. 
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